Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(8): e1010854, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639467

RESUMO

Transcription of ribosomal RNA (rRNA) by RNA Polymerase (Pol) I in the nucleolus is necessary for ribosome biogenesis, which is intimately tied to cell growth and proliferation. Perturbation of ribosome biogenesis results in tissue specific disorders termed ribosomopathies in association with alterations in nucleolar structure. However, how rRNA transcription and ribosome biogenesis regulate nucleolar structure during normal development and in the pathogenesis of disease remains poorly understood. Here we show that homozygous null mutations in Pol I subunits required for rRNA transcription and ribosome biogenesis lead to preimplantation lethality. Moreover, we discovered that Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- mutants exhibit defects in the structure of their nucleoli, as evidenced by a decrease in number of nucleolar precursor bodies and a concomitant increase in nucleolar volume, which results in a single condensed nucleolus. Pharmacological inhibition of Pol I in preimplantation and midgestation embryos, as well as in hiPSCs, similarly results in a single condensed nucleolus or fragmented nucleoli. We find that when Pol I function and rRNA transcription is inhibited, the viscosity of the granular compartment of the nucleolus increases, which disrupts its phase separation properties, leading to a single condensed nucleolus. However, if a cell progresses through mitosis, the absence of rRNA transcription prevents reassembly of the nucleolus and manifests as fragmented nucleoli. Taken together, our data suggests that Pol I function and rRNA transcription are required for maintaining nucleolar structure and integrity during development and in the pathogenesis of disease.


Assuntos
Nucléolo Celular , Divisão do Núcleo Celular , Nucléolo Celular/genética , Ciclo Celular , Proliferação de Células , RNA Polimerase I/genética , RNA Ribossômico/genética
3.
Proc Natl Acad Sci U S A ; 119(31): e2116974119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881792

RESUMO

Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.


Assuntos
Anormalidades Craniofaciais , RNA Polimerase I , RNA Ribossômico , Proteínas Ribossômicas , Crânio , Transcrição Gênica , Animais , Anormalidades Craniofaciais/genética , Disostose Mandibulofacial/genética , Camundongos , Crista Neural/embriologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Proteínas Ribossômicas/metabolismo , Crânio/embriologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35762670

RESUMO

Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.


Assuntos
Anormalidades Craniofaciais , Peixe-Zebra , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfoproteínas/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/metabolismo
5.
Front Physiol ; 11: 531933, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192541

RESUMO

Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/ß-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.

6.
Hum Mol Genet ; 29(12): 2076-2097, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32420594

RESUMO

Mutations of the RNA granule component TDRD7 (OMIM: 611258) cause pediatric cataract. We applied an integrated approach to uncover the molecular pathology of cataract in Tdrd7-/- mice. Early postnatal Tdrd7-/- animals precipitously develop cataract suggesting a global-level breakdown/misregulation of key cellular processes. High-throughput RNA sequencing integrated with iSyTE-bioinformatics analysis identified the molecular chaperone and cytoskeletal modulator, HSPB1, among high-priority downregulated candidates in Tdrd7-/- lens. A protein fluorescence two-dimensional difference in-gel electrophoresis (2D-DIGE)-coupled mass spectrometry screen also identified HSPB1 downregulation, offering independent support for its importance to Tdrd7-/- cataractogenesis. Lens fiber cells normally undergo nuclear degradation for transparency, posing a challenge: how is their cell morphology, also critical for transparency, controlled post-nuclear degradation? HSPB1 functions in cytoskeletal maintenance, and its reduction in Tdrd7-/- lens precedes cataract, suggesting cytoskeletal defects may contribute to Tdrd7-/- cataract. In agreement, scanning electron microscopy (SEM) revealed abnormal fiber cell morphology in Tdrd7-/- lenses. Further, abnormal phalloidin and wheat germ agglutinin (WGA) staining of Tdrd7-/- fiber cells, particularly those exhibiting nuclear degradation, reveals distinct regulatory mechanisms control F-actin cytoskeletal and/or membrane maintenance in post-organelle degradation maturation stage fiber cells. Indeed, RNA immunoprecipitation identified Hspb1 mRNA in wild-type lens lysate TDRD7-pulldowns, and single-molecule RNA imaging showed co-localization of TDRD7 protein with cytoplasmic Hspb1 mRNA in differentiating fiber cells, suggesting that TDRD7-ribonucleoprotein complexes may be involved in optimal buildup of key factors. Finally, Hspb1 knockdown in Xenopus causes eye/lens defects. Together, these data uncover TDRD7's novel upstream role in elevation of stress-responsive chaperones for cytoskeletal maintenance in post-nuclear degradation lens fiber cells, perturbation of which causes early-onset cataracts.


Assuntos
Catarata/genética , Proteínas do Olho/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Ribonucleoproteínas/genética , Animais , Catarata/patologia , Núcleo Celular/genética , Citoesqueleto/genética , Modelos Animais de Doenças , Oftalmopatias , Humanos , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Microscopia Eletrônica de Varredura , Mutação/genética , RNA Mensageiro/genética , Xenopus laevis/genética
7.
Bone ; 137: 115409, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417535

RESUMO

Neural crest cells are a vertebrate-specific migratory, multipotent cell population that give rise to a diverse array of cells and tissues during development. Cranial neural crest cells, in particular, generate cartilage, bone, tendons and connective tissue in the head and face as well as neurons, glia and melanocytes. In this review, we focus on the chondrogenic and osteogenic potential of cranial neural crest cells and discuss the roles of Sox9, Runx2 and Msx1/2 transcription factors and WNT, FGF and TGFß signaling pathways in regulating neural crest cell differentiation into cartilage and bone. We also describe cranioskeletal defects and disorders arising from gain or loss-of-function of genes that are required for patterning and differentiation of cranial neural crest cells. Finally, we discuss the evolution of skeletogenic potential in neural crest cells and their function as a conduit for intraspecies and interspecies variation, and the evolution of craniofacial novelties.


Assuntos
Cartilagem , Crista Neural , Osso e Ossos , Diferenciação Celular , Osteogênese
8.
Hum Mol Genet ; 29(4): 591-604, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31814023

RESUMO

Mutations in the key transcription factor, SOX2, alone account for 20% of anophthalmia (no eye) and microphthalmia (small eye) birth defects in humans-yet its regulation is not well understood, especially on the post-transcription level. We report the unprecedented finding that the conserved RNA-binding motif protein, RBM24, positively controls Sox2 mRNA stability and is necessary for optimal SOX2 mRNA and protein levels in development, perturbation of which causes ocular defects, including microphthalmia and anophthalmia. RNA immunoprecipitation assay indicates that RBM24 protein interacts with Sox2 mRNA in mouse embryonic eye tissue. and electrophoretic mobility shift assay shows that RBM24 directly binds to the Sox2 mRNA 3'UTR, which is dependent on AU-rich elements (ARE) present in the Sox2 mRNA 3'UTR. Further, we demonstrate that Sox2 3'UTR AREs are necessary for RBM24-based elevation of Sox2 mRNA half-life. We find that this novel RBM24-Sox2 regulatory module is essential for early eye development in vertebrates. We show that Rbm24-targeted deletion using a constitutive CMV-driven Cre in mouse, and rbm24a-CRISPR/Cas9-targeted mutation or morpholino knockdown in zebrafish, results in Sox2 downregulation and causes the developmental defects anophthalmia or microphthalmia, similar to human SOX2-deficiency defects. We further show that Rbm24 deficiency leads to apoptotic defects in mouse ocular tissue and downregulation of eye development markers Lhx2, Pax6, Jag1, E-cadherin and gamma-crystallins. These data highlight the exquisite specificity that conserved RNA-binding proteins like RBM24 mediate in the post-transcriptional control of key transcription factors, namely, SOX2, associated with organogenesis and human developmental defects.


Assuntos
Anoftalmia/patologia , Anormalidades do Olho/patologia , Microftalmia/patologia , Mutação , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição SOXB1/genética , Animais , Anoftalmia/genética , Anoftalmia/metabolismo , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microftalmia/genética , Microftalmia/metabolismo , Organogênese , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra
9.
Exp Eye Res ; 168: 57-68, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29337142

RESUMO

Advances in sequencing have facilitated nucleotide-resolution genome-wide transcriptomic profiles across multiple mouse eye tissues. However, these RNA sequencing (RNA-seq) based eye developmental transcriptomes are not organized for easy public access, making any further analysis challenging. Here, we present a new database "Express" (http://www.iupui.edu/∼sysbio/express/) that unifies various mouse lens and retina RNA-seq data and provides user-friendly visualization of the transcriptome to facilitate gene discovery in the eye. We obtained RNA-seq data encompassing 7 developmental stages of lens in addition to that on isolated lens epithelial and fibers, as well as on 11 developmental stages of retina/isolated retinal rod photoreceptor cells from publicly available wild-type mouse datasets. These datasets were pre-processed, aligned, quantified and normalized for expression levels of known and novel transcripts using a unified expression quantification framework. Express provides heatmap and browser view allowing easy navigation of the genomic organization of transcripts or gene loci. Further, it allows users to search candidate genes and export both the visualizations and the embedded data to facilitate downstream analysis. We identified total of >81,000 transcripts in the lens and >178,000 transcripts in the retina across all the included developmental stages. This analysis revealed that a significant number of the retina-expressed transcripts are novel. Expression of several transcripts in the lens and retina across multiple developmental stages was independently validated by RT-qPCR for established genes such as Pax6 and Lhx2 as well as for new candidates such as Elavl4, Rbm5, Pabpc1, Tia1 and Tubb2b. Thus, Express serves as an effective portal for analyzing pruned RNA-seq expression datasets presently collected for the lens and retina. It will allow a wild-type context for the detailed analysis of targeted gene-knockout mouse ocular defect models and facilitate the prioritization of candidate genes from Exome-seq data of eye disease patients.


Assuntos
Bases de Dados Factuais , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica , Cristalino/metabolismo , RNA Mensageiro/metabolismo , Retina/metabolismo , Transcriptoma , Animais , Camundongos , Análise de Sequência de RNA
10.
Sci Rep ; 7(1): 11572, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912564

RESUMO

Lens development involves a complex and highly orchestrated regulatory program. Here, we investigate the transcriptomic alterations and splicing events during mouse lens formation using RNA-seq data from multiple developmental stages, and construct a molecular portrait of known and novel transcripts. We show that the extent of novelty of expressed transcripts decreases significantly in post-natal lens compared to embryonic stages. Characterization of novel transcripts into partially novel transcripts (PNTs) and completely novel transcripts (CNTs) (novelty score ≥ 70%) revealed that the PNTs are both highly conserved across vertebrates and highly expressed across multiple stages. Functional analysis of PNTs revealed their widespread role in lens developmental processes while hundreds of CNTs were found to be widely expressed and predicted to encode for proteins. We verified the expression of four CNTs across stages. Examination of splice isoforms revealed skipped exon and retained intron to be the most abundant alternative splicing events during lens development. We validated by RT-PCR and Sanger sequencing, the predicted splice isoforms of several genes Banf1, Cdk4, Cryaa, Eif4g2, Pax6, and Rbm5. Finally, we present a splicing browser Eye Splicer ( http://www.iupui.edu/~sysbio/eye-splicer/ ), to facilitate exploration of developmentally altered splicing events and to improve understanding of post-transcriptional regulatory networks during mouse lens development.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Cristalino/metabolismo , Transcriptoma , Animais , Biologia Computacional/métodos , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Cristalino/embriologia , Camundongos , Anotação de Sequência Molecular , Filogenia , Isoformas de RNA
11.
Wiley Interdiscip Rev RNA ; 7(4): 527-57, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27133484

RESUMO

The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1, and Bmp4 are commonly required for their development. In contrast, our understanding of posttranscriptional regulation in eye development and disease, particularly regarding the function of RNA-binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila as well as several vertebrate models such as fish, frog, chicken, and mouse. Interestingly, of the 42 RBPs that have been investigated for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as processing bodies, stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate posttranscriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2, and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly, and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving posttranscriptional regulatory networks in eye development and disease. WIREs RNA 2016, 7:527-557. doi: 10.1002/wrna.1355 For further resources related to this article, please visit the WIREs website.


Assuntos
Oftalmopatias/congênito , Olho/embriologia , Proteínas de Ligação a RNA/metabolismo , Animais , Modelos Animais de Doenças , Drosophila/embriologia , Humanos
12.
Dev Dyn ; 244(10): 1313-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26177727

RESUMO

BACKGROUND: It was recently demonstrated that deficiency of a conserved RNA binding protein (RBP) and RNA granule (RG) component Tdrd7 causes ocular defects including cataracts in human, mouse and chicken, indicating the importance of posttranscriptional regulation in eye development. Here we investigated the function of a second conserved RBP/RG component Caprin2 that is identified by the eye gene discovery tool iSyTE. RESULTS: In situ hybridization, Western blotting and immunostaining confirmed highly enriched expression of Caprin2 mRNA and protein in mouse embryonic and postnatal lens. To gain insight into its function, lens-specific Caprin2 conditional knockout (cKO) mouse mutants were generated using a lens-Cre deleter line Pax6GFPCre. Phenotypic analysis of Caprin2(cKO/cKO) mutants revealed distinct eye defects at variable penetrance. Wheat germ agglutinin staining and scanning electron microscopy demonstrated that Caprin2(cKO/cKO) mutants have an abnormally compact lens nucleus, which is the core of the lens comprised of centrally located terminally differentiated fiber cells. Additionally, Caprin2(cKO/cKO) mutants also exhibited at 8% penetrance a developmental defect that resembles a human condition called Peters anomaly, wherein the lens and the cornea remain attached by a persistent stalk. CONCLUSIONS: These data suggest that a conserved RBP Caprin2 functions in distinct morphological events in mammalian eye development.


Assuntos
Segmento Anterior do Olho/anormalidades , Opacidade da Córnea/etiologia , Anormalidades do Olho/etiologia , Cristalino/embriologia , Proteínas de Ligação a RNA/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Cristalino/metabolismo , Cristalino/ultraestrutura , Camundongos Knockout
13.
Hum Genet ; 134(7): 717-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896808

RESUMO

Although majority of the genes linked to early-onset cataract exhibit lens fiber cell-enriched expression, our understanding of gene regulation in these cells is limited to function of just eight transcription factors and largely in the context of crystallins. We report on small Maf transcription factors Mafg and Mafk as regulators of several non-crystallin human cataract-associated genes in fiber cells and establish their significance to this disease. We applied a bioinformatics tool for cataract gene discovery iSyTE to identify Mafg and its co-regulators in the lens, and generated various null-allelic combinations of Mafg:Mafk mouse mutants for phenotypic and molecular analysis. By age 4 months, Mafg-/-:Mafk+/- mutants exhibit lens defects that progressively develop into cataract. High-resolution phenotypic characterization of Mafg-/-:Mafk+/- mouse lens reveals severely disorganized fiber cells, while microarray-based expression profiling identifies 97 differentially regulated genes (DRGs). Integrative analysis of Mafg-/-:Mafk+/- lens-DRGs with (1) binding motifs and genomic targets of small Mafs and their regulatory partners, (2) iSyTE lens expression data, and (3) interactions between DRGs in the String database, unravel a detailed small Maf regulatory network in the lens, several nodes of which are linked to cataract. This approach identifies 36 high-priority candidates from the original 97 DRGs. Significantly, 8/36 (22%) DRGs are associated with cataracts in human (GSTO1, MGST1, SC4MOL, UCHL1) or mouse (Aldh3a1, Crygf, Hspb1, Pcbd1), suggesting a multifactorial etiology that includes oxidative stress and misregulation of sterol synthesis. These data identify Mafg and Mafk as new cataract-associated candidates and define their function in regulating largely non-crystallin genes linked to human cataract.


Assuntos
Proteínas do Olho , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fator de Transcrição MafG , Fator de Transcrição MafK , Proteínas Repressoras , Animais , Catarata/genética , Catarata/metabolismo , Catarata/patologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Fator de Transcrição MafG/genética , Fator de Transcrição MafG/metabolismo , Fator de Transcrição MafK/genética , Fator de Transcrição MafK/metabolismo , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
Asian J Androl ; 17(2): 261-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25370207

RESUMO

Titanium dioxide (TiO 2 ) nanoparticles (TNPs) are widely used commercially and exist in a variety of products. To determine if anatase TNPs (ATNPs) in doses smaller than previously used reach the scrotum after entry in the body at a distant location and induce sperm defects, 100% ATNP (2.5 or 5 mg kg-1 body weight) was administered intraperitoneally to adult males for three consecutive days, followed by sacrifice 1, 2, 3, or 5 weeks later (long-) or 24, 48 or 120 h (short-term exposure). Transmission electron microscopy revealed the presence of ANTP in scrotal adipose tissues collected 120 h postinjection when cytokine evaluation showed an inflammatory response in epididymal tissues and fluid. At 120 h and up to 3 weeks postinjection, testicular histology revealed enlarged interstitial spaces. Significantly increased numbers of terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling-positive (apoptotic) germ (P = 0.002) and interstitial space cells (P = 0.04) were detected in treated males. Caudal epididymal sperm from the short-term, but not a long-term, arm showed significantly (P < 0.001) increased frequencies of flagellar abnormalities, excess residual cytoplasm (ERC), and unreacted acrosomes in treated versus controls (dose-response relationship). A novel correlation between ERC and unreacted acrosomes was uncovered. At 120 h, there were significant decreases in hyperactivated motility (P < 0.001) and mitochondrial membrane potential (P < 0.05), and increased reactive oxygen species levels (P < 0.00001) in treated versus control sperm. These results indicate that at 4-8 days postinjection, ANTP induce structural and functional sperm defects associated with infertility, and DNA damage via oxidative stress. Sperm defects were transient as they were not detected 10 days to 5 weeks postinjection.


Assuntos
Nanopartículas/efeitos adversos , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/farmacologia , Espermatozoides/efeitos dos fármacos , Titânio/efeitos adversos , Titânio/farmacologia , Acrossomo/efeitos dos fármacos , Acrossomo/patologia , Acrossomo/fisiologia , Animais , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Flagelos/efeitos dos fármacos , Flagelos/patologia , Flagelos/fisiologia , Injeções Intraperitoneais , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Modelos Animais , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fármacos Fotossensibilizantes/administração & dosagem , Espermatozoides/patologia , Espermatozoides/fisiologia , Fatores de Tempo , Titânio/administração & dosagem
15.
Biol Reprod ; 91(5): 109, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25232017

RESUMO

To initiate the crucial cell adhesion events necessary for fertilization, sperm must penetrate extracellular matrix barriers containing hyaluronic acid (HA), a task thought to be accomplished by neutral-active hyaluronidases. Here we report that the ~57 kDa hyaluronidase 2 (HYAL2) that in somatic tissues has been highly characterized to be acid-active is present in mouse and human sperm, as detected by Western blot, flow cytometric, and immunoprecipitation assays. Immunofluorescence revealed its presence on the plasma membrane over the acrosome, the midpiece, and proximal principal piece in mice where protein fractionation demonstrated a differential distribution in subcellular compartments. It is significantly more abundant in the acrosome-reacted (P = 0.04) and soluble acrosomal fractions (P = 0.006) (microenvironments where acid-active hyaluronidases function) compared to that of the plasma membrane where neutral hyaluronidases mediate cumulus penetration. Using HA substrate gel electrophoresis, immunoprecipitated HYAL 2 was shown to have catalytic activity at pH 4.0. Colocalization and coimmunoprecipitation assays reveal that HYAL2 is associated with its cofactor, CD44, consistent with CD44-dependent HYAL2 activity. HYAL2 is also present throughout the epididymis, where Hyal2 transcripts were detected, and in the epididymal luminal fluids. In vitro assays demonstrated that HYAL2 can be acquired on the sperm membrane from epididymal luminal fluids, suggesting that it plays a role in epididymal maturation. Because similar biphasic kinetics are seen for HYAL2 and SPAM1 (Sperm adhesion molecule 1), it is likely that HYAL2 plays a redundant role in the catalysis of megadalton HA to its 20 kDa intermediate during fertilization.


Assuntos
Moléculas de Adesão Celular/fisiologia , Epididimo/metabolismo , Células Germinativas/metabolismo , Hialuronoglucosaminidase/fisiologia , Espermatozoides/metabolismo , Animais , Moléculas de Adesão Celular/genética , Epididimo/enzimologia , Feminino , Fertilização , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/fisiologia , Expressão Gênica , Células Germinativas/enzimologia , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Interações Espermatozoide-Óvulo , Espermatozoides/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...